




1. Introduction

r In this paper we continue our investigation of the quad-

tree representation as a suitable data structure for effici-

ently performing various operations on images. Earlier results

showed that converting between quadtree and chain code repre-

sentations [1,2], measuring the perimeter of a region stored

in a quadtree [3], and connected component labeling in a

quadtree [4] can all be accomplished efficiently.

We now consider the problem of computing the Euler number

(or genus), i.e., the number of components minus the number of

holes, of a binary image which is stored in a quadtree. This

topological property is well known to be locally countable when

the image is stored using either a rectangular [5,6] or hexa-

gonal [7] array representation. For example, assume that a

binary image is stored in a rectangular array. Let the l's be

regarded as connected to their four horizontal and vertical

neighbors, while the O's are regarded as -onnected to all eight

of their neighbors. Define V to be the number of l's in the

image, E the number of horizontally or vertically adjacent

pairs of l's, and F the number of 2 by 2 blocks of l's. Then

it can be proved by induction on V that the Euler number of

the image is equal to V-E+F.

The quadtree of a 2n by 2n binary image is defined recur-

sively as follows. Let the root of the quadtree be associated
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with the entire image; the level of the root is n. If the

2 by 2k block of the image associated with an arbitrary node

at level k does not consist of either all l's or all O's, then

subdivide the block into four 2k-I by 2k-1 quadrants and associ-

ate these subblocks with four nodes designated as the four sons

of the given node; each son is considered to be at level k-l.

Each node in a quadtree is stored as a record containing

six fields. The first five fields contain pointers to a node's

father and four sons. The sixth field describes the contents

of the subimage associated with the node--WHITE if the image

is all 0's, BLACK if it contains all l's, and GRAY otherwise.

Readily, all non-terminal nodes are GRAY and all terminal nodes

are either BLACK or WHITE.

While it is possible to compute the Euler number by modify-

ing the connected component labeling algorithm [4] to simul-

taneously label components of l's or O's, the algorithm presented

here is simpler and faster, making use of a generalization of

the V-E+F formula to "pixels" of arbitrary size.
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2. Euler number from a quadtree

The formula quoted in Section 1 for computing the Euler

number considered the image to be divided into unit-sized

pixels. In a quadtree representation, the "pixel" size is

variable, i.e., each leaf node corresponds to a 2k by 2k block

of the image with coustant brightness (either 0 or 1 in our

case where the image is binary). After defining some notation,

we show that the V-E+F formula for rectangular arrays with unit-

sized pixels generalizes to quadtrees where an image consists

of pixels having variable sizes and positions (powers of 2).

Two nodes are said to be adjacent if their blocks of the

image share a common side as shown in Figure la-b. Two nodes

which touch at a corner only (Figure lc) are not considered

adjacent. Notice that by definition of a quadtree, adjacent

nodes cannot properly overlap. A group of nodes are said to

surround a point if there exists a 2 by 2 block of pixels such

that each node's block contains at least one of the four pixels,

and the union of the nodes' blocks contains all four of them.

The four possible ways that one, two, three or four nodes can

surround a point are shown in Figure 2.

We now state and prove our main result:

Theorem 1. Given a quadtree with B BLACK nodes, A pairs of

adjacent BLACK nodes, and S triples or quadruples of BLACK

nodes which surround a point, the Euler number of the binary

image which it represents is equal to B-A+S.



Proof: By induction on the number of BLACK nodes B. We

show that for every possible way of adding a new BLACK node

to a quadtree, the relation B-A+S = V-E+F remains true, where

the Euler number V-E+F is computed on the original binary

image from which the given quadtree was constructed.

A quadtree containing a single BLACK node represents a

2k by 2k connected block of l's in the image. In this case

B-A+S = 1-0+0 = 1, and the Euler number for this image is

V-E+F = 22k-( 2k+l( 2k-1)) +.(2k-1 )2 = 1. Adding a BLACK node

which is not adjacent to any BLACK node already in the quadtree

similarly increases V-E+F by 1 since the new block of l's is

a new component; B-A+S is also increased by 1 since B in-

creases by 1 and A and S are unchanged.

k kAdding a BLACK node of size 2 by 2 which is adjacent to

exactly one other BLACK node, say of size 23 by 2j, implies

that V-E+F remains unchanged since V increases by 22k; E in-

creases by 2m in(jk), the length of the common side, plus

(2k+l(2k-1)), the number of edges within the 2k by 2k block;

and F increases by the number of 2 by 2 blocks inside the new

block, i.e., (2k-1 )2, plus 2min(J1k)-, the number of 2 by 2 blocks

which span the boundary between the two node's blocks. Summing, we see

that V-E+F increases by 22k_( 2min(jk)+2k+l(2k-1 )) + ((2k-1 )2

+ 2 min(jk)-1)= 0. Similarly, B-A+S remains unchanged since

B and A increase by 1 and S does not change.
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In general, if the new BLACK node is adjacent along one

of its sides to m other BLACK nodes, no two of which are adja-

cent (see Figure 3), then V increases by 2 2k , E increases by

(2k+l(2k_-1)) plus the sum of the lengths of the adjacent sides,

and F increases by (2 k-1) 2 plus the number of new 2 by 2 BLACK

blocks overlapping adjacent block boundaries, i.e., the sum

of the lengths of the adjacent sides minus m. Summing, V-E+F

increases by 1-m. On the other hand, B increases by 1, A in-

creases by m, and S is unchanged, so B-A+S also increases by

1-m.

Now consider adding a BLACK node of size 2k by 2k which

is adjacent along one of its sides to a pair of BLACK nodes,

of sizes 2i by 2i and 2j by 2j, which touch along a common

side (see Figure 4). In this case V-E+F is unchanged since

2k klkV increases by 2 , E increases by (2k+l(2k-))+2i+2j, and F

increases by (2k_1 ) 2+2i+2J-l. Likewise, B-A+S is unchanged

since B increases by 1, A increases by 2 and S increases by 1. In

general, given m BLACK nodes nl,n,..,n, such that ni is adjacent

to ni_1 for l<ism, adding a new BLACK node which is adjacent to all

of them (Figure 5) implies that B-A+S is again unchanged since

B increases by 1, A increases by m and S increases by m-l. On

the other hand, it is easily shown that V-E+F also remains un-

changed.

Next, consider the case where the new BLACK node fills in

a corner, i.e., a point becomes surrounded by BLACK nodes.



There are two ways that this can happen, with either three

or four BLACK nodes surrounding the point as shown in Figure

2c-d. In the situation where four BLACK nodes surround a

point, assume that the new node's block is 2k by 2k and the

other three nodes' blocks are 2h by 2h, 2i by 2i , and 2j by 2J.*

Then V increases by 22k, E increases by (2k+l(2k 1 )) + 2min(h,k)

2minj,and k_ 2 ihk-+ 2 (jk) and F increases by (2 -1) + (2 min(h'k)-l) +

(2min j'k)- 1 ) + 1. Summing, we see that V-E+F is unchanged by

the addition of this new block of l's in the image.

A similar argument shows that V-E+F is also unchanged when three

BLACK nodes surround a point. Likewise, in either situation

B-A+S remains unchanged by the addition of this BLACK node in

the quadtree since B increases by 1, A increases by 2, and S

increases by 1.

Note that combinations of these cases on one or more sides

of a node are linear sums of the contributions of each type

of node adjacency and hence the induction argument also holds

for these variations.

Q.E.D.

* See Figure 6.



3. The algorithm

Given the technique described in Section 2 for computing

the Euler number, this section informally describes an algo-

rithm which traverses a quadtree and accumulates the value of

B-A+S. The algorithm is analogous to phase one of the connected

component labeling algorithm given in [41 in that the procedure

is built around finding adjacent pairs of BLACK nodes. The reader

is referred to [4] for details which are not included in the

sketch given here.

n nGiven a quadtree derived from a 2 by 2 image, the algo-

rithm traverses the tree in postorder, visiting sons in the

order NW, NE, SW, and SE. At each BLACK node, B is increased

by 1 and all of the leaf nodes which are adjacent to the node's

eastern and southern sides are checked. For each BLACK neigh-

bor, A is incremented by 1. S is incremented for every suc-

cessive pair of BLACK neighbors along a side since this is an

instance of the configuration shown in Figure 4. Finally, the

nodes surrounding the southeast corner point of the given node

are checked; if they are all BLACK, S is increased by 1 since

this is an instance of the configurations shown in Figures 2c-d.

This procedure guarantees that each BLACK node, each pair

of adjacent BLACK nodes, and each triple or quadruple of BLACK

nodes surrounding a point will be discovered and counted

exactly once. To see this, note that due to the traversal

order, by the time a BLACK node is visited, its northern and

----------------------



'I

western BLACK node adjacencies have already been checked.

Thus the additions to A and S resulting from pairs of BLACK

nodes along the given node's northern and western sides, and

triples or quadruples of BLACK nodes surrounding the given

node's northwest, northeast, and southwest corners, have pre-

viously been counted.

Phase one of the connected component labeling algorithm

[4] can be modified to compute the Euler number of the image

without affecting the asymptotic running time of the algorithm.

While the computation of B and A are readily included in that

algorithm, extensions must be made in order that the value of

S can be computed. Additions to S resulting from successive

neighboring BLACK nodes can be included by retaining the color

of the previously checked neighbor during the sequential scans

of eastern and southern adjacencies. The only other way that

S can be increased is if the southeast corner point is surrounded

by BLACK nodes. If the easternmost of the given node's southern

neighbors and the southermost of its eastern neighbors are

BLACK, it is necessary to check at most one more leaf node

(depending on whether or not either of these neighbors extends

past the corner), which is located diagonally across from the

southeast corner, in order to test this case.

The asymptotic running time of the connected component

labeling algorithm is clearly not affected by the extensions
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sketched here for computing B, A and S. Thus from [43, we

can immediately conclude that the worst case average execution

time for computing the Euler number from a quadtree is propor-

tional to the product of the number of BLACK nodes and the

logarithm of the image diameter.
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4. Concluding remarks

An algorithm has been presented for computing the Euler

number of a binary image represented by a quadtree using a

generalization of the local counting technique used with an

array representation. The algorithm's running time is propor-

tional to Bn, where B is the number of BLACK nodes and the

image size is 2n by 2n For many images, this compares very

favorably with the 0(4n ) time algorithm which uses the array

representation.

The algorithm given here considers points in a component

to be connected to their four horizontal and vertical neighbors.

Alternatively, if we assume each 1 to be connected to its

eight neighbors, an analogous Euler formula exists which takes in-
1 11

to account occurrences of the patterns 1 and 1, and all 900

rotations of each, as well as the previous patterns [81. Sim-

ilarly, in quadtrees we can additionally count pairs of diagonally

adjacent BLACK nodes (Figure 7) and pairs or triples of BLACK

nodes forming concave corners (Figure 8). The asymptotic run-

ning time of the algorithm will not be affected by this modi-

fication.

*Wig"



References

1. C. R. Dyer, A. Rosenfeld, and H. Samet, Region repre-
sentation: boundary codes from quadtrees, Computer Science
Technical Report TR-732, University of Maryland, College
Park, MD, February 1979.

2. H. Samet, Region representation: quadtrees from boundary
codes, Computer Science Technical Report TR-741, University
of Maryland, College Park, MD, March 1979.

3. H. Samet, Computing perimeters of images represented by
quadtrees, Computer Science Technical Report TR-755,
University of Maryland, College Park, MD, April 1979.

4. H. Samet, Connected component labeling using quadtrees,
Computer Science Technical Report TR-756, University of
Maryland, College Park, MD, April 1979.

5. A. Rosenfeld, Picture Processin9 by Computer, Academic

Press, New York, 1969.

6. M. Minsky and S. Papert, Perceptrons, The MIT Press,
Cambridge, MA, 1969.

7. S. B. Gray, Local properties of binary images in two
dimensions, IEEE Trans. Computers 20, 1971, 551-561.

8. A. Rosenfeld, Picture Languages, Academic Press, New York,
1979.

A

--------------------------------------------------



r.J

~ -I

a. b. c.

Figure 1. Pairs of adjacent (a-b) and non-adjacent (c) nodes.

a. b.

d.

Figure 2. Possible configurations of up to four nodes which
surround a point (the midpoints of the small 2 by 2
blocks).
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Figure 3. New BLACK node (striped) which is adjacent along
its east side to three other BLACK nodes (solid
black), no two of which are adjacent.
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Figure 4. New BLACK node (striped) which is adjacent along
its east side to two BLACK nodes (solid black).
The two old nodes are adjacent.
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Figure 5. New BLACK node (striped) which is adjacent along
its east side to three consecutively adjacent
BLACK nodes (solid black).
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Figure 6. Nnw BLACK node's southeast corner is surrounded
bv four BLACK nodes. The new block is striped,
the old blocks are solid.

Figure 7. A diagonally adjacent pair of nodes.

Li

Figure 8. A pair and triple of nodes forming concave corners.
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